Senin, 18 Oktober 2010

Fisika Kedokteran

Bioelectromagnetism (sometimes equated with bioelectricity) refers to the electrical, magnetic or electromagnetic fields produced by living cells, tissues or organisms. Examples include the cell membrane potential and the electric currents that flow in nerves andmuscles, as a result of action potentials. 'Bioelectromagnetism' is somewhat similar to bioelectromagnetics, which deals with the effect on life from external electromagnetism; yet such an effect also falls under the definition of 'bioelectromagnetism'.[1]

Description

Biological cells use bioelectricity to store metabolic energy, to do work or trigger internal changes, and to signal one another. Bioelectromagnetism is the electric current produced by action potentials along with the magnetic fields they generate through the phenomenon of electromagnetism.


Bioelectromagnetism is studied primarily through the techniques of electrophysiology. In the late eighteenth century, the Italianphysician and physicist Luigi Galvani first recorded the phenomenon while dissecting a frog at a table where he had been conducting experiments with static electricity. Galvani coined the term animal electricity to describe the phenomenon, while contemporaries labeled it galvanism. Galvani and contemporaries regarded muscle activation as resulting from an electrical fluid or substance in the nerves.


Bioelectromagnetism is an aspect of all living things, including all plants and animals. Some animals have acute bioelectric sensors, and others, such as migratory birds, are believed to navigate in part by orienteering with respect to the Earth's magnetic field. Also,sharks are more sensitive to local interaction in electromagnetic fields than most humans. Other animals, such as the electric eel, are able to generate large electric fields outside their bodies.


In the life sciences, biomedical engineering uses concepts of circuit theory, molecular biology, pharmacology, and bioelectricity. Bioelectromagnetism is associated with biorhythms and chronobiology. Biofeedback is used in physiology and psychology to monitor rhythmic cycles of physical, mental, and emotional characteristics and as a technique for teaching the control of bioelectric functions. Bioelectromagnetism is also used in certain touch screen technologies that don't actually rely on "touch" but rather on recognizing the electromagnetic waves of body (e.g. the finger) when it comes close to the screen[2].


Bioelectromagnetism involves the interaction of ions. There are multiple categories of Bioelectromagnetism such as brainwaves,myoelectricity (e.g., heart-muscle phenomena), and other related subdivisions of the same general bioelectromagnetic phenomena. One such phenomenon is a brainwave, which neurophysiology studies, where bioelectromagnetic fluctuations of voltage between parts of thecerebral cortex are detectable with an electroencephalograph. This is primarily studied in the brain by way of electroencephalograms.




Kelistrikan dan Kemagnetan di Dalam Tubuh Manusia
(Sel-Sel Syaraf dan Sel Otot Jantung)


Manusia tidak bisa melihat, merasa, mencium atau menyadari keberadaan listrik dengan inderanya, baik untuk muatan maupun untuk medan listriknya. Baru pada akhir abad 18 hal-hal mengenai listrik diteliti.




Historis…Yunani Kuno : Batu amber digosok dapat menarik benda kecil seperti jerami atau bulu (kata listrik dari bahasa yunani, electron = amber)


Gilbert, 1600, dokter istana Inggris –> electric (membedakannya dgn gejala kemagnetan)


Du Fay, 1700, tolak menolak – tarik menarik –> resinous (-), vitreous (+)


Franklin, ilmuwan USA membagi muatan listrik atas dua: positif dan negatif. Jika gelas dengan sutera digosokkan, maka gelas akan bermuatan positif dan sutera akan bermuatan negatif


Luigi Galvani,1786, periode hujan badai: Menyentuh otot tungkai seekor katak dengan metal, teramati otot berkontraksi. Aliran listrik akibat badai merambat melalui saraf katak sehingga otot2nya berkontraksi.

Kemudian hari : Impuls dalam sistem syaraf terdiri dari ion-ion yang mengalir sepanjang sel syaraf, analog dengan aliran elektron dalam konduktor.

Millikan, 1869 – 1953, mencari harga muatan paling kecil, percobaan tetes minyak Millikan
Muatan elektron e = 1,6 10-19 C

Bagaimana Kelistrikan & Kemagnetan di bidang Medis ??


Sistem Saraf :

(1)

Sel Saraf istirahat

Setiap sel saraf menghasilkan sedikit ion negatif tepat di dalam sel dan ion positif tepat diluar membran sel


Rangsangan Sel Saraf
Potensial sel saraf istirahat dapat diganggu oleh:
1. Rangsangan Listrik
2. Kimia
3. Fisis/mekanik
Jika ada impuls –> butir2 membran akan berubah dan ion2 Na+ akan masuk dari luar sel ke dalam sel.

Gangguan ini sedikit mempengaruhi potensial membran, dan cepat kembali pada nilai istirahatnya= -70 mV.
Rangsangan kuat –> depolarisasi dari -90mV menjadi -50 mV ( potensial ambang), maka perubahan potensial menjadi terbuka.

Ion-ion Na+ mengalir masuk sel dalam waktu cepat dan jumlah banyak, sehingga menimbulkan arus listrik : I=dq/dt
Aliran Na+ –>perubahan potensial listrik menjadi +40mV

Setelah depolarisasi, saluran Na+ tertutup selama 1 ms sampai membran tidak dapat dirangsang lagi.
Perubahan transien pada potensial listrik diantara membran disebut potensial aksi.
Setelah mencapai puncak mekanisme pengangkutan di dalam sel membran dengan cepat mengembalikan ion Na+ ke luar sel –> potensial membran istirahat
Untuk mengukur potensial listrik :
– EKG (elektro kardiografi) –> jantung
– EEG (elektro ensevalo grafi) –> otak
– EMG (elektromiografi) –> otot, dll

Berlanjut di Seri Fisika Kesehatan__Biolistrik 02: Kelistrikan Otot jantung


Sumber:

http://alifis.wordpress.com/2010/01/14/seri-fisika-kesehatan__biolistrik-01/

(Alifis Corner)